看板 Grad-ProbAsk 關於我們 聯絡資訊
1. Let V = M be a vector space with the Frobenius inner product and W be a 2x2 [ 1 1 ] subset of V defined by W = {A in V:trace (| |A)=0} [ 1 0 ] (1) Find a basis for the subspace of V consisting af all matrices that are [ 1 4 ] orthogonal to | |. [ 3 2 ] (2) Is W a subspace of V ? If yes, find an orthonormal basis for W. [ 1 1 ] (3) Let B = | |. Find the orthogonal projection of B onto W. What is the [ 1 1 ] distance from b to W ? 2. Let P be a 3x3 orthogonal projection matrix onto the plane 2x+2y-z=0 3 (1) What is the rank of P ? What are its three eigenvalues ? 3 (2) Is P diagonalizable ? What are its three eigenvectors ? 3 -1 (3) Let Q=2P -I . Is Q invertible ? If yes, what is Q ? 3 沒感覺...煩請高手了 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.249.147.79
louis719:1.只差在他是矩陣空間 我猜你應該是不會算矩陣內積?? 12/29 17:16
louis719:2.P^3 = P 投影矩陣幾次方都還是投影矩陣 所以rankP^3=2 12/29 17:17
louis719:然後eigenvalue是0,1,1 所以可以對角化 兩個1對應到的就 12/29 17:18
louis719:是2x+2y+2z=0的解 0的eigenvector則是[2 2 1] 12/29 17:19
louis719:打錯[2 2 -1]才對 12/29 17:20
louis719:Q=2P^3-I = 2P - I 所以Q是reflection matrix 12/29 17:24
louis719:也就是對2x+2y-z=0這個平面做反射 所以Q=Q^-1 12/29 17:25
louis719:抱歉我推文第四句應該是 2x+2y-z=0的解 12/29 17:29