作者dkcheng (電磁霸主)
看板Grad-ProbAsk
標題[理工] [線代]兩題線代
時間Thu Dec 29 16:05:19 2011
1. Let V = M be a vector space with the Frobenius inner product and W be a
2x2
[ 1 1 ]
subset of V defined by W = {A in V:trace (| |A)=0}
[ 1 0 ]
(1) Find a basis for the subspace of V consisting af all matrices that are
[ 1 4 ]
orthogonal to | |.
[ 3 2 ]
(2) Is W a subspace of V ? If yes, find an orthonormal basis for W.
[ 1 1 ]
(3) Let B = | |. Find the orthogonal projection of B onto W. What is the
[ 1 1 ]
distance from b to W ?
2. Let P be a 3x3 orthogonal projection matrix onto the plane 2x+2y-z=0
3
(1) What is the rank of P ? What are its three eigenvalues ?
3
(2) Is P diagonalizable ? What are its three eigenvectors ?
3 -1
(3) Let Q=2P -I . Is Q invertible ? If yes, what is Q ?
3
沒感覺...煩請高手了
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.249.147.79
推 louis719:1.只差在他是矩陣空間 我猜你應該是不會算矩陣內積?? 12/29 17:16
→ louis719:2.P^3 = P 投影矩陣幾次方都還是投影矩陣 所以rankP^3=2 12/29 17:17
→ louis719:然後eigenvalue是0,1,1 所以可以對角化 兩個1對應到的就 12/29 17:18
→ louis719:是2x+2y+2z=0的解 0的eigenvector則是[2 2 1] 12/29 17:19
→ louis719:打錯[2 2 -1]才對 12/29 17:20
推 louis719:Q=2P^3-I = 2P - I 所以Q是reflection matrix 12/29 17:24
→ louis719:也就是對2x+2y-z=0這個平面做反射 所以Q=Q^-1 12/29 17:25
推 louis719:抱歉我推文第四句應該是 2x+2y-z=0的解 12/29 17:29