看板 Grad-ProbAsk 關於我們 聯絡資訊
If G and G吧 are isomorphic, then G is self-complement. Show that if G=(V,E) is self-complement and |V| = n, then n = 4k or 4k+1, k屬於正整數. 這題最後的證明結果是: |E|=|E吧| & 2|E| = n(n-1)/2 --> |E| = n(n-1)/4 故 n = 4k or 4k+1 ,k屬於正整數 可是我還是想不通耶xD -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.34.232.57
bahaha:E+E爸就會是Kn完全圖的所有邊,即C(n,2) 01/12 20:16
FY4:|E(G)|+|E(G)|'=C(n取2) 因|E(G)|=|E(G)|' E|(G)|=C(n取2)/2 01/12 20:16
FY4:(n*(n-1))/4 =E|(G)| 01/12 20:18
Demonic221:3Q! 我是卡在最後答案的變換轉不過來,終於通了 haha 01/12 20:43