作者mickeyha (M*schief)
看板Grad-ProbAsk
標題[理工] [線代] 98交大資訊
時間Sat Jan 21 23:05:57 2012
┌ ┐
Suppose Q = [q1 q2 q3] =│1 1 1│
│1 1 -1│
│1 -1 1│
│1 -1 -1│
└ ┘
Let S12 = span(q1,q2) and S23 = span(q2,q3).
Whickh statements are true?
(a) The
union of the two subspaces S12 and S23 forms a vector space.
(b) The
intersection of the two subspaces S12 and S23 forms a vector space.
(c) The span(q1) is an
orthogonal complement of the subspaces S23
(d) The rows of Q form a basis for the row space.
(e) The dim of the row space of Q is 3.
答案為 b e
小妹對a與b混淆了...甚至不太知道該怎麼定義"forms a vector space",
對c選項則是不清楚
orthogonal complement的意思囧
如果有大大方便,可否解答一下,謝謝>___<
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 1.162.97.237
※ 編輯: mickeyha 來自: 1.162.97.237 (01/21 23:06)
推 mqazz1:可以想一想黃子嘉x和y軸的例子 聯集和交集的差異 01/21 23:15
※ 編輯: mickeyha 來自: 1.162.97.237 (01/21 23:19)
推 Byzantin:a是聯集 b是交集 它問聯集(交集)後是否形成vector space 01/21 23:31
推 Byzantin:在vector space V中,S是V的子集 V裡面和所有S的vector 01/21 23:38
→ Byzantin:做內積等於0所形成的集合就是S的orthogonal complement 01/21 23:38