看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《jody0113 (peter123)》之銘言: : 1. : y"-2y'+2y=e^(x)tan(x) 2 (D - 2D + 2)y_h = 0 x x y_h = C1 * e cos(x) + C2 * e sin(x) x x Let y_p = v1 * e cos(x) + v2 * e sin(x) x x y_p'= v1 * e [cos(x) - sin(x)] + v2 * e [cos(x) + sin(x)] x x + v1' * e cos(x) + v2' * e sin(x) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 0 x x y_p"= v1' * e [cos(x) - sin(x)] + v2' * e [cos(x) + sin(x)] x x - 2v1 * e sin(x) + 2v2 * e cos(x) Substitute them into the ODE { { v1' * [cos(x) - sin(x)] + v2' * [cos(x) + sin(x)] = tan(x) => { { v1' * cos(x) + v2' * sin(x) = 0 { { { v1 = sin(x) - ㏑[sec(x) + tan(x)] => { { v2 = -cos(x) { => y = y_h + y_p x x x = c1 * e cos(x) + c2 * e sin(x) - e cos(x) * ㏑[sec(x) + tan(x)] : 2. : y''-2y'+2y=e^(-x)ln(x) : 麻煩版上的高手解題 : 我算到最後的積分都積不出來... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.34.133.34
a149851571:哇...最後那個聯立...有什麼訣竅可以解嗎? 01/22 15:36
jack0711:用克拉馬 01/22 17:03
jack0711:克拉瑪解出V1' V2'再積分 01/22 17:05
jack0711:他用的解題方法教參數變易法(variance of parameters) 01/22 17:06
john97611017:用匿運算子好像也蠻快得唷 01/22 17:18
frhbac321200:逆運算子很快! 01/22 20:28
jody0113:請問{1/D^(2)+1}tanx 用逆算子如何用? 01/22 21:54
mp8113f:將D^2+1 分解 (D-i)(D+i) 之後部分分式 分別代入公式 01/22 22:00