作者endlesschaos (佐佐木信二)
看板Grad-ProbAsk
標題Re: [理工] 工數 微分方程
時間Sun Jan 22 15:19:07 2012
※ 引述《jody0113 (peter123)》之銘言:
: 1.
: y"-2y'+2y=e^(x)tan(x)
2
(D - 2D + 2)y_h = 0
x x
y_h = C1 * e cos(x) + C2 * e sin(x)
x x
Let y_p = v1 * e cos(x) + v2 * e sin(x)
x x
y_p'= v1 * e [cos(x) - sin(x)] + v2 * e [cos(x) + sin(x)]
x x
+ v1' * e cos(x) + v2' * e sin(x)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 0
x x
y_p"= v1' * e [cos(x) - sin(x)] + v2' * e [cos(x) + sin(x)]
x x
- 2v1 * e sin(x) + 2v2 * e cos(x)
Substitute them into the ODE
{
{ v1' * [cos(x) - sin(x)] + v2' * [cos(x) + sin(x)] = tan(x)
=> {
{ v1' * cos(x) + v2' * sin(x) = 0
{
{
{ v1 = sin(x) - ㏑[sec(x) + tan(x)]
=> {
{ v2 = -cos(x)
{
=> y = y_h + y_p
x x x
= c1 * e cos(x) + c2 * e sin(x) - e cos(x) * ㏑[sec(x) + tan(x)]
: 2.
: y''-2y'+2y=e^(-x)ln(x)
: 麻煩版上的高手解題
: 我算到最後的積分都積不出來...
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 114.34.133.34
推 a149851571:哇...最後那個聯立...有什麼訣竅可以解嗎? 01/22 15:36
推 jack0711:用克拉馬 01/22 17:03
→ jack0711:克拉瑪解出V1' V2'再積分 01/22 17:05
→ jack0711:他用的解題方法教參數變易法(variance of parameters) 01/22 17:06
推 john97611017:用匿運算子好像也蠻快得唷 01/22 17:18
推 frhbac321200:逆運算子很快! 01/22 20:28
推 jody0113:請問{1/D^(2)+1}tanx 用逆算子如何用? 01/22 21:54
→ mp8113f:將D^2+1 分解 (D-i)(D+i) 之後部分分式 分別代入公式 01/22 22:00