作者ejialan (eji)
看板Grad-ProbAsk
標題Re: [理工] [拉式] 98南交工數
時間Tue Feb 14 14:16:58 2012
※ 引述《jerrysimon ()》之銘言:
: http://0pics.com/images/image171.jpg
: 第18題,我原本想要直接分式,但發現很難做
: 然後我讓它等於2式相乘、使用摺積定理,但逆轉換後的摺積我不會做
: 請問有人知道這題該怎麼處理嗎?
: 感謝~m(_ _)m~
Y(s) = 4/(s^2+1)^2/(s-1)^2
= (As+B)/(s^2+1)^2 + (Cs+D)/(s^2+1) + E/(s-1)^2 + F/(s-1)
As+B = [Y*(s^2+1)^2] | s^2=-1
= [4/(s^2-2s+1)] | s^2=-1
= 4/(-2s) | s^2=-1
= 4s/(-2s^2) | s^2=-1
= 2s => A=2, B=0
[Y*(s^2+1)^2]_s | s^2=-1 (_s表示對s微分)
= -8/(s-1)^3 | s^2=-1
= -8/(s^3-3s^2+3s-1) | s^2=-1
= -8/(-s+3+3s-1) = -4/(s+1)
= -4(s-1)/(s^2-1) | s^2=-1 = 2s-2 = A + 2s * (Cs+D) | s^2=-1
= A + 2Ds -2C => D=1, C=2
E = [Y*(s-1)^2] | s=1
= 4/(s^2+1)^2 | s=1
= 1
F = [Y*(s-1)^2]_s | s=1 (_s表示對s微分)
= -16s/(s^2+1)^3 | s=1
= -2
Y(s) = 2s/(s^2+1)^2 + 2s/(s^2+1) + 1/(s^2+1) + 1/(s-1)^2 -2/(s-1)
y(t) = tsin(t) + 2cos(t) + sin(t) + te^t - 2e^t
答案選(A)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.250.23.202
推 squallting:這一題反拉太慢 才7分而已~"~ 02/14 14:20
推 blazesunny:太厲害了推! 02/14 14:20
推 a149851571:打鐘摟XDDD 02/14 14:26
推 cg1436:這題7分真的會做不下去... 02/14 14:27
推 jack0711:最後的Y(s)好像不等於題目的Y(s),是我看錯嗎@@?? 02/14 14:40
推 jack0711:我看錯了SORRY@@ 02/14 14:44
推 mp8113f:不符合投資報酬率啊 ...XD" 這樣搞下去 ... 02/14 14:50
推 ntust661:才兩個項 其實只微分一次都算還好@@ 02/14 14:52
推 jerrysimon:請問2s-2 = A + 2s * (Cs+D) ←這條等式是怎麼來的? 02/14 15:05
推 jerrysimon:我以為Cs+D就=2s-2耶 02/14 15:09
→ ejialan:As+B微分跑出A (Cs+D)(s^2+1)微分跑出C(s^2+1)+2s(Cs+D) 02/15 09:48
→ ejialan:其他兩項微分都有(s^2+1)會消掉 02/15 09:49