看板 Grad-ProbAsk 關於我們 聯絡資訊
1. By using the method of characteristics, find an explicit local solution 1 2 2 to u + ---[ ( u ) + x ] = 0, if t>0, x in R, with u(x,0) = (x^2)/2 t 2 x 2. solve the wave equation for infinite vibrating string 2 [ c_1 , x<0 u = c (x)u , where c(x) =[ tt xx [ c_2 , x>0. Let a wave u(x,t)=f(x-c_1t) come in from the left, thus the initial conditions are u(x,0) = f(x) and u (x,0) = -c_1f'(x). t Assume that u(x,t) and u (x,t) are continuous everywhere. Also give x an interpretation for the solution you find. =========================================================================== 第二題由D'Alembert method 可以知道解的長相為 u(x,t) = F(x-c_1t)+G(x+c_1t) for x<0 and all t = H(x-c_2t)+K(x+c_2t) for x>0 and all t. 然後接下來我就不知道要怎麼做了 ans : u(x,t) =f(x-c_1t) + [(c_2-c_1)/(c_2+c_1)]f(-c_1t-x) for x<0 c_1 = [(2c_2)/(c_2+c_1)]f((---(x-c_2t)) for x>0 c_2 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 115.43.192.87