看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《peacrackers (歡樂可樂果)》之銘言: : 各位板眾大家好,小弟有2題ODE求解 : 雖然已大略知曉方法,卻仍不得其精要之處而苦思 : 在這裡請教大家,請不吝賜教。感謝大家。 : 1. dy y-xy^2-x^3 : ---- = ------------ : dx x+x^2y+y^3 : 2. dy y+xy^3(1+lnx) : ---- = --------------- : dx x : 兩題我都用合併法,但餘項不知如何處理 1. xdy-ydx+y(x^2+y^2)dy+x(x^2+y^2)dx=0 => xdy-ydx ----------- + ydy + xdx =0 x^2+y^2 => -1 tan (y/x) + 0.5y^2 + 0.5x^2 + c = 0 2. xdy = ydx + xy^3(1+lnx)dx => xdy - ydx ----------- = xy(1+lnx)dx y^2 => -d(x/y) = xy(1+lnx)dx => -x/y d(x/y) = x^2 dx + x^2*lnx dx => -0.5(x/y)^2 = (1/3)x^3 + F(x) + c1 ... (1) 又 F(x) = ∫x^2*lnx dx = 0.5∫ x*lnx d(x^2) = 0.5 [x^3*lnx - ∫x^2 d(x*lnx) ] = 0.5 [x^3*lnx - ∫x^2*(lnx + 1) dx] = 0.5 [x^3*lnx -(1/3)x^3 - F(x) + c2] => 3*F(x) = x^3*lnx - (1/3)x^3 + c2 => F(x) = (1/3)x^3*lnx - (1/9)x^3 + c3 帶回(1)式 => -0.5(x/y)^2 = (1/3)x^3 + (1/3)x^3*lnx - (1/9)x^3 + c4 => 2 1 y = ------------------------------ -(4/9)x - (2/3)x*lnx + c/x^2 1 y = ±------------------------------------ √[ -(4/9)x - (2/3)x*lnx + c/x^2] -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.123.237 ※ 編輯: jack0711 來自: 140.113.123.237 (03/31 02:32)
ntust661:推! 03/31 12:17
peacrackers:嘩...感謝不吝指教! 04/01 00:50