推 Nolanly:感謝大大,我發現自己的錯誤了,這題真的很廢時 05/01 22:27
※ 引述《Nolanly (V勝)》之銘言:
: (t^2)x''+tx'+2y=0
: (t^2)y''+tx'+2x=0
: -1 2
: 請問一下算出來x跟書上一樣x(t)=c1t +c2t +c3cos(√2 lnt)+c4sin(√2 lnt)
: 但x帶回去算y卻不一樣請問發生甚麼問題?(畫線部分)
: -1 2
: 我算的:(-c1/2)t -2c2t +(√2c4-2c3)cos(√2 lnt)-(√2c3+2c4)sin(√2 lnt)
: _______________________________________________
: -1 2
: 書上:(-c1/2)t -2c2t+c3cos(√2 lnt)+c4sin(√2 lnt)
: _____________________________
: 註:喻超凡書上377頁
應該是你算錯
y=(-t^2*x''-t*x')/2
令x(t) = c1/t + c2 t^2 + c3 cos(√2lnt) + c4 sin(√2lnt)
= x1 + x2 + x3 + x4
x1' = -c1/t^2, x1'' = 2c1/t^3
y1 = (-t^2*x1''-t*x1')/2 = -c1/(2t)
x2' = 2c2 t, x2'' = 2c2
y2 = (-t^2*x2''-t*x2')/2 = -2c2 t^2
x3' = -c3 sin(√2lnt)*√2/t
x3''= -c3 cos(√2lnt)*2/t^2 + c3 sin(√2lnt)*√2/t^2
^^^^^^^^^^^^^^^^^^^^^^
這項*t^2和x3'*t剛好消掉
y3 = (-t^2*x3''-t*x3')/2 = c3 cos(√2lnt)
x4' = c4 cos(√2lnt)*√2/t
x4''= -c4 sin(√2lnt)*2/t^2 - c4 cos(√2lnt)*√2/t^2
^^^^^^^^^^^^^^^^^^^^^^
這項*t^2和x4'*t剛好消掉
y4 = (-t^2*x4''-t*x4')/2 = c4 sin(√2lnt)
y = y1+y2+y3+y4 = -c1/(2t) - 2c2 t^2 + c3 cos(√2lnt) + c4 sin(√2lnt)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.250.27.59