看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《honestonly (努力增胖的小R)》之銘言: : (1) : 2 : d y : a ---- + bcosy - c = 0; a, b, c是常數 : 2 : dt : : 求 y(t) = ? Let z = y' = dy/dt => d^2 y/dt^2 = y'' = (y')' = z' = dz/dt = (dz/dy)(dy/dt) = z(dz/dy) a z(dz/dy) + (bcosy - c) = 0 a 2zdz + 2(bcosy - c)dy = 0 a z^2 + 2(bsiny - cy) = a C1 z^2 + (2/a)(bsiny - cy) = C1 z^2 = C1 + (2/a)(cy - bsiny) = (dy/dt)^2 dt/dy = [ C1 + (2/a)(cy - bsiny) ]^(-1/2) dt = [ C1 + (2/a)(cy - bsiny) ]^(-1/2) dy y(t) ( t + C2 ) = ∫ [ C1 + (2/a)(cτ - bsinτ) ]^(-1/2) dτ 1 2 y(t) 2 ( t + C2 ) = { ∫ [ C1 + (2/a)(cτ - bsinτ) ]^(-1/2) dτ } 1 : (2) : dy 2 : cy - bsiny = a(----) ; a, b, c是常數 : dt : 求 y(t) = ? a z^2 = ( cy - bsiny ) z^2 = (1/a)( cy - bsiny ) = (dy/dt)^2 (dt/dy)^2 = [ (1/a)( cy - bsiny ) ]^(-1) dt/dy = [ (1/a)( cy - bsiny ) ]^(-1/2) dt = [ (1/a)( cy - bsiny ) ]^(-1/2) dy y(t) t+ C2 = ∫ [ (1/a)( cy - bsiny ) ]^(-1/2) dτ 1 2 y(t) 2 ( t + C2 ) = { ∫ [ (1/a)(cτ - bsinτ) ]^(-1/2) dτ } 1 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 218.166.106.225 ※ 編輯: Frobenius 來自: 218.166.106.225 (06/24 03:58)
RedQ:排版用心,但是這樣根本沒解到,殘留那個積分式才是問題 06/24 11:46
RedQ:第一題相當於第二題,然而第二題你只是將他開根號加上積分 06/24 11:48
Frobenius:Mathematica跟我解的結果一樣(表示無法積分成初等函數) 06/24 12:00