作者KAINTS (RUKAWA)
看板Grad-ProbAsk
標題[理工] 線代
時間Wed Aug 29 22:48:00 2012
1.The set of polynomials of degree n is a subsapce
of the vector space of all polynomials.
(F): why?
2.The set of all m*n matrices with the usual definitions
of matrix addition and scalar multiplication is a
vector space.
(T):this question does not mention the zero subspace contains
in the set,so I think the answer is wrong.
n m
3.The vector space Mm*n and L(R ,R ) are isomorphic.
(T):the definition of isomorphism if the linear transformation
is one-to-one and onto,that is,the standrd representation
matrix is invertibe,which the matrix must be squar.
so I think the answer is wrong.
4.The definite integral is a linear operator on C([a,b]),the
vector space of cotinuous real-valued functions defined on[a,b].
(F):why?
5.If a vector space contains a finite linearly dependent set,then
the vector space is finite-dimesional.
(F):By GSO ,we can get a orthogonal set,which is also linearly
independent set,then this set will be finite(becasue a finite
linearly dependent).
so I think the answer is true.
6.If T is a linear operator on a vector space with the basis
B={v1,v2,...v3},then the matrix representation of T with
respecet to B is the matrix[T(v1) T(v2) ... T(v3)].
(F):If we replace [T(v1) T(v2) ... T(v3)] by
[[T(v1)]B [T(v2)]B ... [T(v3)]B ],then this question
will be true?
7.An inner product on a vector space V is linear operator on V.
(F): why?
8.The indefinite integral can be used to define an inner product
on P2.
(F):why?
n
9.Every subspace of a vector space is a subset of R for some
integer n.
(F): If A is a subspace of B,then A is a subset of B.
so I think the answer is true.
Def: A linear operator on a finite-dimensional vector space is
diagonalizable if there is a basis for the vector space
consisting of eigenvectors of the operator.
我有點不懂這個定義在講什麼= =
問題有點多 感謝板上大大回答
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 123.193.7.20
※ 編輯: KAINTS 來自: 123.193.7.20 (08/29 22:52)
推 ILzi:可對角化的定義(算子的部份) 08/30 00:24
→ ILzi:↑先回答最後一個DEf的問題 08/30 00:24
推 ddczx:第三題應該是說L這個線性映射可以表示成M的左乘映射,使的每 08/30 00:37
→ ddczx:一對應的映射均打到同一地方。所以這兩者同構。 08/30 00:37
→ ddczx:第5題是說向量空間存在有限相依集則向量空間維度為有限,那 08/30 00:50
→ ddczx:任選無限維向量空間中0向量則為反例 08/30 00:50
推 ddczx:第9題取多項式空間就不會被包含在R^n的子空間了 08/30 00:59
→ ddczx:第一題取x^n跟-x^n則相加=0不屬於degree n ,不符合封閉性 08/30 01:02
可題目有說已經是他的子空間了,我後來想是不是因為這樣
Pn有可能是n+1,n+2,....的子空間
但1,2,...n-1,則不可能,因為題目最後是說all,,所以答案錯
不知道這樣想可以嗎?
→ ddczx:第2題不就是所有m*n矩陣集合的空間,其中當然包含0向量 08/30 01:06
推 ddczx:第8題不定積分做出來會是多項式,但內積是將兩向量變純量 08/30 01:17
→ ddczx:第7題 內積:V*V->F,linear operator on V:V->V 所以不一樣 08/30 01:21
意思有點像,內積是做出一個值;linear operator,則是一個矩陣表示,兩者意思不同,
是這樣嗎?
推 bouwhat:第六題你的附註是正確的by函數矩陣化的定義 08/30 08:29
推 ILzi:(1)指的是n次多項式,n次多項式並不是向量空間 08/30 09:33
→ ILzi:(4)要限制在多項式的積分.. 08/30 09:36
為什麼,不太懂ㄟ...
然後可以問一下,inner product space & vector space,
之間有什麼關聯嗎??
※ 編輯: KAINTS 來自: 111.70.142.103 (08/30 10:00)
※ 編輯: KAINTS 來自: 111.70.142.103 (08/30 10:18)
→ ddczx:第一題就是因為題目說是他的子空間但其實不是才錯阿 08/30 10:55
推 ILzi:cotinuous real-valued functions太多了..e^x也是 08/30 14:51
→ ghjklgv9:有關聯~單範正交基底就是線性獨立,因為矩陣做單範去除 08/30 23:24
→ ghjklgv9:掉0,我覺得內積空間好像是種速解,比如說gram的公式 08/30 23:42
→ ghjklgv9:只要確定生成集合有正交性,就可以用公式速解出某個可以 08/30 23:43
→ ghjklgv9:向量可以被其他向量做線性組合,這就是第一章的線性系統 08/30 23:46
→ ghjklgv9:而線性系統用增廣矩陣解AX=B的齊次解,其實也就等於在求 08/30 23:47
→ ghjklgv9:ker,所以還是有用到前三章的東西,另外還有會用到dim 08/30 23:53
→ ghjklgv9:rank的看法來說明一些事情,我也才剛上完這邊,有錯誤請 08/30 23:56
→ ghjklgv9:指點一下,感謝各位前輩 08/30 23:56
→ ghjklgv9:N次多項式是向量空間的一種吧??子嘉現代四版注意事項3-2 08/31 00:07