看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《ezWang (ez王)》之銘言: : 1. : solve xz''+2z'=(9x+6)e^(3x+2y) : z'是z對x做偏微分 : z''是z對x做兩次偏微分 : 答案:z=c1(y)+c2(y)/x + e^(3x+2y) z = z_h + z_p z_h滿足 xz''+2z'=0 => x^2z''+2xz'=0為Cauchy-Euler Equation z_h = Cx^m代入, m*(m-1)*x^m + 2*m*x^m = 0, m(m+1)=0, m=0, -1 => z_h = c1(y)*x^0 + c2(y)*x^(-1) = c1(y) + c2(y)/x 這裡把y視為常數 所以積分常數可以是y的函數 z_p滿足xz''+2z'=(9x+6)e^(3x+2y) 令z_p = A*e^(3x+2y) z_p' = 3A*e^(3x+2y) z_p'' = 9A*e^(3x+2y) 代入 (9Ax+6A)*e^(3x+2y) = (9x+6)e^(3x+2y) 比較得A=1, z_p = e^(3x+2y) z = z_h+z_p = c1(y) + c2(y)/x + e^(3x+2y) : 2. : x : solve y''-2y'+y= e /(1+x^2) : yp算到一半卡住 : x x -1 : 答案的yp=0.5e ln(x^2+1)+xe tan x : 請教各位~ : 謝謝~ 答案有錯 y = y_h + y_p y_h = c1*e^x + c2*x*e^x y_p有記公式就代公式,沒記就推一下,這邊直接代公式 | y1 y2 | | e^x x*e^x | W = | | = | | = e^(2x) | y1' y2'| | e^x x*e^x+e^x | u1' = -x*e^x*e^x/(1+x^2)/e^(2x) = -x/(1+x^2) u1 = ∫-x/(1+x^2)dx = ∫-0.5/(1+x^2) d(1+x^2) = -0.5 ln(x^2+1) u2' = e^x*e^x/(1+x^2)/e^(2x) = 1/(1+x^2) u2 = ∫1/(1+x^2)dx = atan(x) (令x=tanθ可得) y_p = y1*u1 + y2*u2 = -0.5*e^x*ln(x^2+1) + x*e^x*atan(x) 前面那項差個負號 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.121.146.175
ezWang:感謝e大>_<~ 11/05 23:19