看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《tokyo291 (工口工口)》之銘言: : 1. Suppose q1,q2,q3,q4 are orthonormal vectors in R^4. : Let A=[q1 q2 q3 q4], B=[q1+q2 q2+q3 q3+q4 q4+q1] : and C=[q2 q3 q4 q1]. Find all possible values for the 4 by 4 determinats : detA, detB, detA*detC. : 我的算法是利用q1 q2 q3 q4彼此獨立所以經由列運算可以轉成單位矩陣 : 故detA=1,不曉得這樣子想對不對? 2 T T (detA) = det(A)*det(A) = det(A)*det(A ) = det(AA ) = det I = 1 => detA = ±1 detB = det[q1+q2 q2+q3 q3+q4 q4+q1] = det[q1+q2 q2+q3 q3-q1 q4+q1] ^^^^^行運算 = det[q1+q2 q2+q1 q3-q1 q4+q1] = 0 ^^^^^行運算again detC = det[q2 q3 q4 q1] = -det[q3 q2 q4 q1] = det[q4 q2 q3 q1] = -det[q1 q2 q3 q4] = -detA 2 故 detA*detC = -(detA) = -1 : 2. If A is 3 by 3 symmetric positive definite, then Aqi=λiqi : with eigenvalues λi and orthonormal eigenvectors qi. Suppose : x=c1*q1+c2*q2+c3*q3. Assume λ1<=λ2<=λ3. What c's will make the ratio : x^TAx/(x^Tx) as large as possible? What is the maximum of the ratio : x^TAx/(x^Tx)? 印象中最大值是最大的eigenvalue,所以答案是(0,0,1) Ax = A(c1q1+c2q2+c3q3) = c1λ1q1 + c2λ2q2 + c3λ3q3 T 2 2 2 x Ax = c1 λ1 + c2 λ2 + c3 λ3 T 2 2 2 x x = c1 + c2 + c3 2 2 2 T T c1 λ1 + c2 λ2 + c3 λ3 x Ax/(x x) = ──────────── ≦ λ3 2 2 2 c1 + c2 + c3 -- -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 163.19.249.253
tokyo291:感謝您! 02/18 22:26