看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《alrightwill (歐萊威爾)》之銘言: : Suppose a computer can solve a problem of size 100,000 in 15 hours. : Assume that execution time is determined by CPU speed; i.e., no other : constraint on performance. : How large a problem can be solved in 15 hours by a computer that is 100 : times faster if the program's time complexity is : 1. θ(n) 2. θ(n log n) : 3. θ(n^2) 4. θ(n^3) : 以前沒遇過這種題目, 不知如何把實際計算時間跟複雜度兜在一起 : 希望高手解答 首先題目意思就是要在同樣時間內解完 然後電腦快100倍 問可以解到多大的問題 我將這邊把電腦快100倍想成用原電腦跑100倍的時間 1. θ(n) 當size = s 要花 t 的時間跑 則size = ns 要花 nt 的時間跑 nt = 100t => n = 100 => size = 100s Ans: size = 10,000,000 2. θ(n log n) 當size = s 要花 t 的時間跑 則size = ns 要花 (n log n)t 的時間跑 (n log n)t = 100t => n log n = 100 => n近似於57 => size = 57s Ans: size = 5,700,000 3. θ(n^2) 當size = s 要花 t 的時間跑 則size = ns 要花 (n^2)t 的時間跑 (n^2)t = 100t => n^2 = 100 => n = 10 => size = 10s Ans: size = 1,000,000 4. θ(n^3) 當size = s 要花 t 的時間跑 則size = ns 要花 (n^3)t 的時間跑 (n^3)t = 100t => n^3 = 100 => n 近似 4.64159 => size = 4.64159 Ans: size = 464,159 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.45.139.44
alrightwill:謝謝你! 一點就通 03/15 03:53