看板 Grad-ProbAsk 關於我們 聯絡資訊
※ 引述《z3992270 (Eazon)》之銘言: : 請問各位高手這題 : There are k+1 coins in a box. : The ith coin will,when flipped,turn up head withprobability i/k : ,i=0,1,...,k . A coin is randomly slected from the box and is then : repeatedly filpped. : If the first n flips all results in heads, what is the conditional : probability that the (n+1)st flip will do likewise? : 答案寫 : P((n+1)st head | n次head) : 1 1 2 k-1 k k+1 : =--(--+--+.....+---+--)=---- (*) : k k k k k 2k {coin0 coin1 coin2 ... coink-1 coink } prob 0/k 1/k 2/k k-1/k k/k (head) first,we need all results in heads,so we can't choose coin0 then P(n次head)=1/k (total k's coins,except coin ) second ,we have to choose (n+1)st head is head Prob=1/k+2/k+...k/k so the answer is (*) : 我自己是把n+1次正面的機率除於n次正面的機率 : 就等於 : k k : Σ(i/k)^(n+1)/Σ(j/k)^n : i=0 j=0 : 不知道這樣對不對?? : 請各位大大指點一下 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 42.75.233.242
z3992270:可是在所有head結果當中不是選擇應該看coin是什麼而機率 10/10 12:56
z3992270:有所變化嗎?我覺得應該不是1/k 10/10 12:58
z3992270:我覺得應該是(i/k)^n/Σ(j/k)^n 10/10 13:08
KAINTS:錯...那是正面的機率!1/k是指從這k個會出現正面的硬幣挑一 10/10 18:37
KAINTS:個的機率,你搞錯了。 10/10 18:37
z3992270:所以說他是從出現n次正面的硬幣中又隨機挑出一個算他出現 10/10 19:12
z3992270:的機率囉!? 10/10 19:13