看板 IMO_Taiwan 關於我們 聯絡資訊
※ 引述《cuttlefish (睡覺真是一種幸福呀~￾ I》之銘言: 第四題好像可以用這個不等式: \ if a 為正實數 sqrt(a)>=2a/(a+1) \ ps我只會這題啦~ 有時間..寫詳細一點好了(我想大家應該早就會了....) sqrt(a)>=2a/(a+1) 等號成立在 a=0 or 1 sqrt[x/(y+z)]>=2x/(x+y+z) sqrt[y/(x+z)]>=2y/(x+y+z) sqrt[z/(x+y)]>=2z/(x+y+z) 相加即可 注意到等號不能全成立 得證 ※ 引述《chaogold (dchaodx)》之銘言: : ※ 引述《myflame (龍隊 紅隊 太陽隊)》之銘言: : : 感謝chaogold提供題目 : : 1. In triangle ABC prove that a + b + c < r_1 + r_2 + r_3 + min {r_1,r_2,r_3} : : where r_1 is the exradius opposite a, r_2 is the exradius opposite b and r_3 : : is the exradius opposite c. : : 2. How can you arrange numbers from 1 to 2003 in a row so that avg. of any : : two numbers doesn't lie between them? E.g. 2003...1002...1 is invalid as : : (1+2003)/2=1002 : : 3.Prove that there are infinitely many primes that can be written as the sum : : of a prime and a power of two. : : 4. [x/(y+z)]^(1/2) + [y/(x+z)]^(1/2) + [z/(y+x)]^(1/2) > 2 : 第二題學長的解法太妙了! : 我只能說妙.. -- ※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw) ◆ From: 140.112.18.108 -- ※ 發信站: 批踢踢實業坊(ptt.csie.ntu.edu.tw) ◆ From: 140.112.7.59
JGU:咳~你沒事幹麻翹普物跑來計中電別人=.= 推 61.230.34.82 09/18
cuttlefish:翹普物來計中是要看某消息(魔術社的).... 推140.112.249.199 09/20
cuttlefish:而且我才電不到人呢~ 推140.112.249.199 09/20