看板 IMO_Taiwan 關於我們 聯絡資訊
Problem 5. Find all functions f from the set R of real numbers into R which satisfy for all x,y,z belonging to R the identity f(f(x) + f(y) + f(z)) = f(f(x) - f(y)) + f(2xy + f(z)) + 2f(xz-yz). 1. i) z = 0 代入,則由x,y對稱性 f(f(x)-f(y)) = f(f(y)-f(x)) ii) z = 1 代入,則由1及 x,y對稱性 f(x-y) = f(y-x),故 f(a)=f(-a) 2. y=0 代入 f(f(x) + f(0) + f(z)) = f(f(x) - f(0)) + f(f(z)) + 2f(xz). 知若 f(x1)=f(x2),則 f(x1z) = f(x2z) for all z in R. 3. z=1代入 f(f(x) + f(y) + f(1)) = f(f(x) - f(y)) + f(2xy + f(1)) + 2f(x-y) 及 y=-y, z = 1 代入,由1. f(f(x) + f(y) + f(1)) = f(f(x) - f(y)) + f(-2xy + f(1)) + 2f(x+y) 兩式相減知 f(x+y) - f(x-y) 只和 xy 有關,f(x+y)-f(x-y) = f(1+xy)-f(1-xy) 又由2. f(x+y)-f(x-y) = f(1) - f((1-xy)/(1+xy)), if xy=/=-1 4. Claim:若f非常數,則f(u)=f(v) => u= +-v 反證法可設|u|>|v|,由2. f(ur)=f(vr) for all r in R. 可解方程 x+y = ur, x-y=vr,此時 xy = (u^2-v^2)r^2 /4 >0 故取 r= 2 sqrt(u^2-v^2),則 0 = f(x+y)-f(x-y) = f(1) - f((1-xy)/(1+xy)) = f(1)-f(0) 再由2. f(x) = f(0) 為常數。 (Note: 易證滿足方程之常數函數只有0) 5. y=1/2, z=0 代入 f(f(x) + f(1/2) + f(0)) = f(f(x) - f(1/2)) + f(x + f(0)) x=1,-1 分別代入,因f(a)=f(-a),故 f(f(0)+1)=f(f(0)-1) 故由4. f(0) +1 = +- (f(0) -1) +不可能,取-,得f(0)=0 6. x=y 代入 f(2f(x) + f(z)) = f(2x^2 + f(z)) (1) 又(1) z=0, 代入 f(2f(x)) = f(2x^2) 故由1. 2f(x) = 2x^2,或-2x^2,即 f(x)=x^2 或-x^2 (1) z=1, 代入 若f(z)=1 2f(x) + 1 = +- (2x^2+1)且 2f(x) = +- 2x^2,故 f(x)=x^2 若f(z)=-1 2f(x) - 1 = +- (2x^2-1), 2f(x) = +- 2x^2,故 f(x)=x^2 驗算合,結論f(x) = 0 或 x^2 -- r=e^theta 即使有改變,我始終如一。 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.68.26.196
Dawsen:1-ii)還要考慮f(f(x)-f(y))這一項? 03/26 16:34
就是用1-i) ※ 編輯: LimSinE 來自: 219.68.26.196 (03/26 19:33)
Dawsen:cool 03/27 02:58
※ 編輯: LimSinE 來自: 219.68.26.196 (03/27 17:04) ※ 編輯: LimSinE 來自: 219.68.26.196 (03/27 17:05)