看板 Math 關於我們 聯絡資訊
Let V be a subspace of R^n. A linear transformation μ: R^n -> R^n is called a projection of R^n on V if μ(x) in V and x-μ(x) in V^⊥ for every x in R^n. (a) Let A be a n╳n matrix. Show that μ: R^n -> R^n defined by μ(x) = Ax for all x in R^n is a projection of R^n onto C(A), if and only if A^2 = A and A = A^T. (C(A) = the column space of A.) (b) What are the eigenvalues and the corresponding eigenspaces of a projection? -- 我好窮啊,我好缺批幣啊 ,你有摳摳ㄋㄟ 可憐可憐我吧,施捨一點吧 請到(P)LAY-->(P)AY-->(0)GIVE-->PttFund-->吧 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.218.142
waterworld0:耶耶 ~ 感謝哩^^ 210.58.70.170 07/23