看板 Math 關於我們 聯絡資訊
※ 引述《PttFund (批踢踢基金只進不出)》之銘言: : Let G be a group and let Z = Z(G) be its center. Show that : if G/Z is cyclic, then G is abelian. let xZ generates G/Z, then any element of G has the form x^ky, where y belongs to Z now (x^ky)(x^k'y')=x^(k+k')(yy')=(x^k'y')(x^ky) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 220.135.132.108