看板 Math 關於我們 聯絡資訊
2 解 8x u''+ 6xu'+ (x-1)u = 0 我的解法: 用method of Frobenius 2 x u''+ (3x/4)u'+ (x-1)u/8 = 0 P_0(x) = 3/4 => b_0 = 3/4 otherwise b_n = 0 P_1(x) = (x-1)/8 => c_0 = -1/8, c_1 = 1/8 otherwise c_n = 0 r ∞ n 則解 u(x) = x Σ (a_n)x , a_n ≠ 0 n=0 indicial eq : F(r) = r(r-1) + (3/4)r - (1/8) = 0 => r = 1/2 or -1/4 n 解遞迴 F(n+r)a_n + Σ [G_n(k)][a_(n-k)] = 0, (n = 1,2,3,...) ………(*) k=1 2 F(n+(1/2)) = (n+(1/2))(n-(1/2)) + (3/4)(n+(1/2)) - (1/8) = n + (3/4)n G_n(k) = (n-k+r)b_k + c_k => G_n(1) = (n-1+(1/2))*b_1 + c_1 = c_1 = 1/8, otherwise G_n(k) = 0 (*) 2 ===> (n +(3/4)n)a_n + (1/8)a_(n-1) = 0 n -1 (-1) a_0 => a_n = ────── a_(n-1) => a_n = ───────,令 a_0 = 1 8n^2 + 6n n 2 Π (8i + 6i) i=1 n (1/2) ∞ (-1) n (1/2) 所以一解為 u_1(x) = x Σ ─────── x + x n=1 n 2 Π (8i + 6i) i=1 因為(1/2)-(-1/4) = 3/4,非整數,所以同理 n (-1/4) ∞ (-1) n (-1/4) 另外一解為 u_2(x) = x Σ ─────── x + x n=1 n 2 Π (8i - 6i) i=1 則 u(x) = Au_1 + Bu_2 ------------------------------------------------------------------------------ 我用mathematica解,他給我Bessel和Gama function的型態 我不知道該怎麼轉換,還是我算錯了呢? -- ╔《新版十二生肖》═════════════════════════════╗ ║ ˍ ║ ●●╰‧‧ [ ] ιι . . - - ˍ▁ '' .. '〒' '. ' ' ' ξ . . '@@ ' ˊˋ ★︰ / ██╯ / @@@@ █◤ ˋˊ ║ ╚═══" " ════════════ ""══"═"════════liszt1025╝ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.211.87