看板 Math 關於我們 聯絡資訊
題目如下: Let f(x+y) = f(x)+f(y) for all x and y in R. Prove that there is a number m such that f(t)= mt for all rational number t. HINT: First decide what m has to be. Then proceed in steps, starting with f(0)= 0 , f(p)= mp for p in N, f(1/p)= m/p, and so on. 像這樣的證明題...我該如何開頭如何結尾呢? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.57.70.119
suhorng :柯西法 01/20 17:52
suhorng :http://0rz.tw/YC3VG , 最後 Q→R 的部份如下: 01/20 17:54
suhorng :噢 ... 題目沒有要證到 R, 請忽略上面那句 Orz 01/20 17:55