看板 Math 關於我們 聯絡資訊
The appearance of parameter h in the equation implies that \Psi depends on the parameter. Sometimes we use the notation \Psi(x, t; h), where we use ';' to separate variable(s) and parameter(s). We expect that when h varies a little, the solution won't change much. So that we can use the solution of h=0 to deduce the solution for small h. It resembles to Tayler expansion and is called asymptotic expansion. Let \Psi(x, t; h) =\Psi(x, t; 0)+ h\Psi_h(x, t; 0)+O(h^2) =A+h B+ O(h^2) and substitute it to the original equaiton & BC, we obtain W [A+h B+ O(h^2)] =h [A+h B+O(h^2)]^2, where W denotes the wave operator. (#) WA+ h (WB-A^2)+ O(h^2) = 0 (ICBC1)[A+hB](0,t)=e^{i4t} (ICBC2)[A+hB]_x(0, t)=-4ie^{i4t} Equation (#) along with BCs should hold for arbitray h, so we arrive at 0) Equation of order h^0 WA=0 A(0,t)=e^{i4t} A_x(0, t)=-4i e^{i4t} 1) Equation of order h^1 WB=A^2 B(0,t)=0 B_x(0,t)=0 What you have obtained is the soluton for 0). You just need to carry on 1). ※ 引述《konayuki (粉雪)》之銘言: : 我把題目做成圖檔 : http://ppt.cc/ycUv : 從第二個和第三個條件的式子,可知道ψ=exp(4it-4ix) : 我原本以為這就快到終點了 : 但帶回第一個式,式子的左邊一算出來是0...... : 到底是怎麼回事呢 : 另外題目下面說 : Calculate ψ(x,t) for x>=0 to first order accuracy in h. : 這又是? : 代表ψ(x,t)是一個數列?? h的意義又是? -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 162.105.195.208