看板 Math 關於我們 聯絡資訊
※ 引述《Madroach (∞)》之銘言: : (1)Show that x^2-y^2-u^3+v^2+4 = 0 : 2xy+y^2-2u^2+3v^4+8 = 0 : can be solve u, v as continuously differentiable functions of : (x,y) for (x,y) near (2,-1) satisfying u(2,-1)=2, v(2,-1)=1. : (2)Find the value of du dv : ----(2,-1) + ----(2,-1) : dx dx : 第一小題的部分我會做 : 但是第二小題想不出辦法解出來 Q Q : 懇請各位強者能指示小弟一點方向 f_1:x^2-y^2-u^3+v^2+4 f_2:2xy+y^2-2u^2+3v^4+8 f_1(2,-1,2,1)=0 f_2(2,-1,2,1)=0 let A=f'(2,-1,2,1)=[ 4,2,-6, 2] [-2,2,-8,12] let Ax=[ 4,2] Ay=[-6, 2] [-2,2] [-8,12] detAx=/=0 thus existence of C'-mapping u v,defined in a neighborhood of (2,-1) s.t. u(2,-1)=2 v(2,-1)=1 then -(Ax^-1)Ay= -1/12 [ 4,-10] [-44,52] -1/3 + 11/3 = 10/3# -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 115.82.86.211
Madroach :了解!Rudin的書在這部份給了很棒的找解方式呢! 02/10 08:40
Madroach :謝謝! 02/10 08:40