看板 Math 關於我們 聯絡資訊
※ 引述《GSXSP (Gloria)》之銘言: : f(x) differentiable on (-∞,∞) : with f(x+y) = f(x)f(y) : prove that f(x) = a^x for some a : (Hint: ln f(x) must have constant derivitive) : 我做 f'(x) f'(y) : grad ln f(x+y) = (------ , ------ ) : f(x) f(y) : f'(x) : 但是還是看不出來 ----- 是constant : f(x) : 請問這題要怎麼做呢? 提供另外一個方法試試看好了 2 f(0)=f(0+0)=f(0) =>f(0)=0 or 1 Case 1: If f(0)=0 them f(x)≡0 for all x in R.....done Case 2: if f(0)=1 for n \in N n f(n)=f(1+1+...+1)=f(1)  ̄ ̄ ̄ ̄n times 1=f(0)=f(1+(-1))=f(1)*f(-1) -1 => f(-1)=f(1) Hence for n be negtive integer -n -1 -n n f(n)=f((-1)*(-n))=f(-1)*f(-n)=f(-1)*f(1) =f(1) * f(1) =f(1) 1 1 1 1 m Moreover, f(1)=f(--- + --- + ...+---) = f(---) m m m m  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄m times 1 (---) 1 m hence f(---)=f(1) m 1 n (---) --- n 1 n m finally, f(---)=f(---) =f(1) m m 到此我們做完全部的有裡數的部份 therefore, for r be a irrational number there exists a seq {x_n} ,where x_n are all rational number such that x_n->r and f is diff => f is conti Hence x_n r f(r)=lim f(x)= lim f(x_n)= lim f(1) =f(1) x->r n->inf n->inf let f(1)=a, we are done === 這作法是模仿線性的XDD f(x+y)=f(x)+f(y) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.37.124.220 ※ 編輯: jacky7987 來自: 114.37.124.220 (02/12 13:40)
GSXSP :推 02/12 16:04