看板 Math 關於我們 聯絡資訊
※ 引述《ntust661 (Enstchuldigung~)》之銘言: : ※ 引述《xx52002 (冰清影)》之銘言: : : Suppose A is a 3*3 real matrix such that A^3 = A^2 - A + I : : (a) Find all possible eigenvalues of A. : : (b) Determine the minimal and characteristic polynomial of A. : : (c) Is A diagonalizable? Explain your answer. : : 煩請各位解答 QQ : 3 2 : λ - λ + λ - 1 = 0 (minimal and characteristic polynomial of A) : λ = 1 : λ = i : λ = -i : 可以的^^ 因為特徵值對應的特徵向量互相線性獨立 min(λ)| (λ^3–λ^2 +λ–1) ∵A is a 3*3 real matrix ∴min(λ)= λ^3–λ^2 +λ–1 or λ–1 (1) min(λ)= λ^3–λ^2 +λ–1 ==> char(λ)=λ^3–λ^2 +λ–1 A is not diagonalizable over R A is diagonalizable over C, (2) min(λ)=λ–1 ==> char(λ)= (λ-1)^3 A is diagonalizable over R ( A ~ I_3 ) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.217.48.47
xx52002 :感謝! 以前都懶得分C跟R..orz 03/01 12:06
ntust661 :這個比較詳細@@ 03/01 16:27