看板 Math 關於我們 聯絡資訊
※ 引述《turboho (西卡拉)》之銘言: : ※ 引述《skyhigh8988 (Aesthetic)》之銘言: : : 抱歉打不出 "or" - -用 ˇ代替 : : ____________________________________________________________________________ : : 題目: : : (pˇqˇr)^(pˇtˇ-q)^(pˇ-tˇr) : : =pˇ[r^(tˇ-q)] : : 推敲了一小時得不太到想要的結果 : : 希望版上有朋友能夠幫忙一下 : : 感謝 : Suppose p, then there's nothing to proof. (Both sides are true) : So we may as well assume -p. : Now we need to show (qˇr)^(tˇ-q)^(-tˇr) = r^(tˇ-q). : Again, suppose r, then this is just tˇ-q = tˇ-q, which is true. : So we may as well assume -r. : Now RHS = false, while LHS = q^(tˇ-q)^-t, which is also false, : so the result follows. Let's see if this works for you: (pˇqˇr)^(pˇtˇ-q)^(pˇ-tˇr) = {pˇ[(qˇr)^(tˇ-q)]}^(pˇ-tˇr) = pˇ[(qˇr)^(tˇ-q)^(-tˇr)] = pˇ[(qˇr)^(-tˇr)^(tˇ-q)] = pˇ{[rˇ(q^-t)]^(tˇ-q)} = pˇ{[rˇ-(-qˇt)]^(tˇ-q)} = pˇ[r^(tˇ-q)] -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 68.185.170.12
skyhigh8988 :謝謝您 我懂了~ 03/01 12:34