看板 Math 關於我們 聯絡資訊
※ 引述《a224996 (綠茶)》之銘言: : 1. ∫xlnx dx : 2. ∫x/1+x^2 dx 上下極限 正負無窮大 : 請幫解... 1. Let u = lnx , dv = x dx Using integration by parts, we get ∫u dv = uv - ∫v du = (x^2/2)(ln x) - ∫(x^2/2)(1/x)dx = (x^2/2)(ln x) - ∫(x/2)dx = (x^2/2)(ln x) - x^2/4 2. Consider the improper integral with lower limit 0 upper limit ∞ firstly. Note that Σ(x/1+x^2) diverges since Σ(1/x) diverges and (1/x)/(x/(1+x^2))→1 as x→∞.(Limit Comparison Test) Thus ∫x/1+x^2 dx with lower limit 0 upper limit ∞ diverges and hence the required improper integral diverges. -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.217.1