※ 引述《nina888 (= =)》之銘言:
: 如題,
: Let X1,X2,...i.i.d with P(Xi>x)=e^(-x),
: let Mn=max(Xm) 1<=m<=n,
: Show that (1) limsup(Xn/logn)=1 as n->無窮大 a.s.
: (2) (Mn/logn)-> 1 a.s.
: 此題出自書 Probability:Theory and Examples
: 作者: Rich Durrett
: Chapter1 Section1.6:Borel-Cantelli Lemmas
: 不知道該如何下筆證這一題型,
: 有高手能給我hint之類的嗎???
: 謝謝~~~
1. Given e >0,
Let A_n = {X_n/log(n) > 1+e}, then P(A_n) = (1/n)^{1+e}.
Sum P(A_n) < 無窮大, by Borel-Cantelli Lemma, P(A_n i.o.) =0
因此 limsup(Xn/logn) =< 1. a.s.
Let B_n = {X_n/log(n) > 1-e}, then P(B_n) = (1/n)^{1-e}. B_n 獨立
Sum P(B_n) = 無窮大, by Borel-Cantelli Lemma, P(B_n i.o.) =1
因此 limsup(Xn/logn) >= 1 a.s.
2. 欲證 liminf Mn/log(n) >= 1
Let C_n = {Mn/log(n)=<1-e},
P(C_n)=P({Mn=<(1-e)log(n)})=連乘積 P({X_j=<(1-e)log(n)}), (j=1,2,..n)
= (1-(1/n)^{1-e})^n
你可以證明 Sum P(C_n) < 無窮大, 再用一次 B-C lemma
limsup Mn/log(n) =< 1 也是相同的
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 219.71.210.134