→ qoolinboy :有沒有全部是相異實數的解 03/12 19:05
來回答這個問題
a式: x + y + z = w
b式: 1/x + 1/y + 1/z = 1/w
a代入b: 1/x + 1/y + 1/z = 1/(x+y+z)
(xy+yz+yz)/xyz = 1/(x+y+z)
由於 x,y,z,x+y+z都不為0
所以:
(x+y+z)(xy+yz+zx) = xyz
=> (x+y+z)(xy+yz) + (x+y+z)*xz = xyz
=> y(x+y+z)(x+z) + xz(x+z) = 0
=> (x+z)[y(x+y+z)+xz] = 0
=> (x+z)[y^2+(x+z)y+xz] = 0
=> (x+z)(y+x)(y+z) = 0
換言之, x =-z or x =-y or y =-z
即: w = y or w = z or w = x
所以沒有4個數都相異的解
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.116.127.158
※ 編輯: ckchi 來自: 140.116.127.158 (03/12 20:41)
→ present :請不要幫他解 這是中山大學現在的徵答題 03/12 22:25
→ qoolinboy :抱歉!我有先解出來了,我自己解出來也是這樣 03/12 22:52
→ qoolinboy :我只是懷疑他題目出的是否要我們寫通解 03/12 22:53
→ qoolinboy :不然你可以看我先打的那篇文章 03/12 22:54