看板 Math 關於我們 聯絡資訊
※ 引述《j0958322080 (Tidus)》之銘言: : 1.mdv/dt = mg - kv^2 : 請問用三角代換後他的上下限要怎麼決定?? : 另外若v>(mg/k)^(1/2)的上下限呢?? mdv/dt = mg - kv^2 dv/dt = g - (k/m)v^2 dv/[g - (k/m)v^2] = dt dv/[1 - (k/mg)v^2] = gdt ____ dv/[1 - ( √k/mg v )^2] = gdt ____ ____ ____ d ( √k/mg v) / [1 - ( √k/mg v )^2] = ( √kg/m ) dt -1 ∫1/(1-x^2)dx = (1/2) ㏑| (1+x)/(1-x) | + C = tanh x + C -1 ____ -1 ____ ____ ____ tanh [ √k/mg v(t) ] - tanh [ √k/mg v(0) ] = √kg/m ( t - 0 ) = √kg/m t -1 ____ ____ -1 ____ tanh [ √k/mg v(t) ] = √kg/m t + tanh [ √k/mg v(0) ] ____ ____ -1 ____ √k/mg v(t) = tanh ( √kg/m t + tanh [ √k/mg v(0) ] ) ____ ____ -1 ____ v(t) = √mg/k tanh ( √kg/m t + tanh [ √k/mg v(0) ] ) ____ when t → ∞ => v(t) → √mg/k : 2.dy/dt + 10y = 1,y(1/10)=2/10 : 我的解法:let u(x)=10,∫10dx=10x,e^u(x)=e^10x : ---> e^10x(y)=∫(e^10x)dx=e^10x/10-->y=1/10 : 不知道哪步錯了 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.160.210.116