看板 Math 關於我們 聯絡資訊
1.Let G be a simple group of order 168. (1) How many Sylow 7-subgroups of G? (2) Let P be a Sylow 7-subgroup. Show that │N(P)│= 21, where N(P) is the normalizer of P in G, ie N(P)={g in G│gPg^-1=P} (3) Prove or disprove that G has a subgroup of order 14. 第一小題我有算,我算1個或8個 第二小題我的想法是,如果只有1個7-Sylow subgroup,那麼P normal in G 所以應該是有8個 7-Sylow subgroup 2. Show that a group of order 72 is not simple. 這題我有做,在一個小地方卡住,想請高手指點一下 (pf.) 72=2^3 * 3^2 Consider 3-sylow subgroups (1) If 3-sylow subgroups is normal ,then done. (2) Otherwise, there exist 4 3-sylow subgroups Let H,K be two of them => │H∩K│=(│H││K│)/│HK│= 9*9/72 =1.... & │H∩K│││K│=9 => │H∩K│= 3 ∵ H、K are abelian => H∩K is normal in H & H∩K is normal in K. i.e N_G(H∩K)>H and N_G(H∩K)>K => 9 =│H│││N_G(H∩K)│││G│=72 =>│N_G(H∩K)│= 18 or 36 or 72 (i) │N_G(H∩K)│= 18 (這個情況我不知該如何討論???) (ii) │N_G(H∩K)│= 36 [G:N_G(H∩K)]= 72/36 = 2 => N_G(H∩K) is normal in G => G is not simple (iii) │N_G(H∩K)│= 72 =>│N_G(H∩K)│= │G│= 72 => N_G(H∩K)=G => H∩K is normal in G # 麻煩個位大大了!!! 感謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 221.120.1.63