看板 Math 關於我們 聯絡資訊
※ 引述《loribank (小蘿莉銀行)》之銘言: : 1.Let G be a simple group of order 168. : (1) How many Sylow 7-subgroups of G? : (2) Let P be a Sylow 7-subgroup. Show that │N(P)│= 21, : where N(P) is the normalizer of P in G, ie : N(P)={g in G│gPg^-1=P} : (3) Prove or disprove that G has a subgroup of order 14. No, Let H be a such subgroup. H contains an element of orfer 7, H contains a Sylow 7 of G. Denote this Sylow 7 by K. Then K is normal in H, ([H:K]=2) Therefore, H is contained as a subgroup in N(K), but |N(K)|=21. Contradiction. : 第一小題我有算,我算1個或8個 : 第二小題我的想法是,如果只有1個7-Sylow subgroup,那麼P normal in G : 所以應該是有8個 7-Sylow subgroup : 2. Show that a group of order 72 is not simple. If there are only 1 Sylow 3, then we are done. If there are 4 Sylow 3, say P1, P2, P3, P4. Let G act on X={P1,P2,P3,P4} by conjugation. (g → gPig^{-1}). This induces a map f from G to S4, Since |G|=72, f can't be injective. Hence Ker(f) is non-identity. G is not simple. : 這題我有做,在一個小地方卡住,想請高手指點一下 : (pf.) 72=2^3 * 3^2 : Consider 3-sylow subgroups : (1) If 3-sylow subgroups is normal ,then done. : (2) Otherwise, there exist 4 3-sylow subgroups : Let H,K be two of them : => │H∩K│=(│H││K│)/│HK│= 9*9/72 =1.... & │H∩K│││K│=9 : => │H∩K│= 3 : ∵ H、K are abelian : => H∩K is normal in H & H∩K is normal in K. : i.e N_G(H∩K)>H and N_G(H∩K)>K : => 9 =│H│││N_G(H∩K)│││G│=72 : =>│N_G(H∩K)│= 18 or 36 or 72 : (i) │N_G(H∩K)│= 18 (這個情況我不知該如何討論???) : (ii) │N_G(H∩K)│= 36 : [G:N_G(H∩K)]= 72/36 = 2 => N_G(H∩K) is normal in G : => G is not simple : (iii) │N_G(H∩K)│= 72 : =>│N_G(H∩K)│= │G│= 72 : => N_G(H∩K)=G : => H∩K is normal in G : # : 麻煩個位大大了!!! : 感謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.71.210.134 ※ 編輯: yusd24 來自: 219.71.210.134 (03/13 23:10)
loribank :謝謝你的回答,可以幫我看看第一題的第二小題和第二 03/14 00:44
loribank :題的解法嗎???感謝!!!! 03/14 00:44
yusd24 :因為大致上是對的,我就沒有回了XD 03/14 09:34
yusd24 :(1) 8個, (2) 168/8=21 03/14 09:36
loribank :感謝^^ 03/17 23:02