看板 Math 關於我們 聯絡資訊
※ 引述《loribank (小蘿莉銀行)》之銘言: : 1. Consider the ring Z[sqrt(-3)] : (1) Prove 5 is an irreducible element in Z[sqrt(-3)] : (2) Prove 5 is not a prime element in Z[sqrt(-3)] : (3) Is Z[sqrt(-3)] ia UFD? : (4) Is Z[sqrt(-3)]/<5> a field? : 2. Prove or disprove : (1) 1+sqrt(-19) is a prime element in Z[1+sqrt(-19)] : (2) Z[1+sqrt(-19)] is UFD : (3) If R is PID, then R[x] is a PID. : 感謝幫忙^^ 1.很怪,我覺得5在Z[sqrt(-3)]裡是prime,用excel暴力找也找不到 5|x*y(x,y in Z[sqrt(-3)]) 但5不整除其中之一,請其他版友check。 2.Z[1+sqrt(-19)]=Z[sqrt(-19)] (1)no 1+sqrt(-19)|5*4=20 but 1+sqrt(-19)不是4或5的因數 (1+sqrt(-19))(1-sqrt(-19))=20 (1+sqrt(-19))(a+b*sqrt(-19))=4or5兩邊取絕對值不難發現矛盾。 (2)no 1+sqrt(-19)irreducible(假設能分解,兩邊取絕對值應該可以導出矛盾) (3)no Z is PID, Z[x] is not(ideal generated by 2 and x is not principal) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 108.65.2.220
ntnusliver :1.同意 03/18 14:59
ntnusliver :用norm 可以證得5是prime 03/18 15:01