看板 Math 關於我們 聯絡資訊
Solve the equation (z+1)^4 = z^4 where z is a complex number. 我的做法: let z = x + iy x,y屬於R => (x+1+iy)^4 = (x+iy)^4 => [(x+1+iy)/(x+iy)]^4 = 1 => [(x^2+x+y^2-iy)/(x^2+y^2)]^4 = 1 let w = [(x^2+x+y^2)/(x^2+y^2)] + i[-y/(x^2+y^2)] => w^4 = 1 = cos0 + isin0 => w = cos(kpi/2) + isin(kpi/2) for k = 0,±1,±2,... if k = 0, then w = 1 => (x^2+x+y^2)/(x^2+y^2) = 1 and -y/(x^2+y^2) = 0 => x,y無實數解 if k = 1, then w = i => (x^2+x+y^2)/(x^2+y^2) = 0 and -y/(x^2+y^2) = 1 => x = -1/2 , y = -1/2 if k = 2, then w = -1 => (x^2+x+y^2)/(x^2+y^2) = -1 and -y/(x^2+y^2) = 0 => x = -1/2 , y = 0 if k = 3, then w = -i => (x^2+x+y^2)/(x^2+y^2) = 0 and -y/(x^2+y^2) = -1 => x = -1/2 , y = 1/2 共解出三個相異的z 但複數方程不是冪次多少就解出多少個根嗎? 請問有哪個步驟的邏輯錯了嗎? 還是哪裡解錯了呢? 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.113.68.127
ttinff :x^3=x^3+x+1會有三個根嗎? 03/18 22:28
sulanpa :謝謝 03/18 22:46