作者tibicos (tibicos)
看板Math
標題Re: [機統] 常態分配
時間Fri Apr 1 21:50:35 2011
※ 引述《raymond168 (raymond168)》之銘言:
: 附上連結:
: http://ppt.cc/4tHo
: (a)小題已求出
: n n n
: X=Σ αjXj~N(Σ αj.μ,Σ (αj)^2.σ^2)
: j=1 j=1 j=1
: n n n
: Y=Σ βjXj~N(Σ βj.μ,Σ (βj)^2.σ^2)
: j=1 j=1 j=1
: 想請教(b)小題,α與β在什麼條件下,會使得X與Y獨立
以下是我的作法,請指教或更正:
Given X and Y are both Gaussian,
X and Y are independent iff X and Y are uncorrelated.
So if we show that E(XY)=E(X)E(Y), then it indicates the indepdence
of X and Y.
n n n n n
E(X)E(Y)=(μ^2)Σ Σαiβj =(μ^2)Σαiβi +(μ^2)ΣΣαiβj
i=1j=1 i=1 i=1j=1
i≠j
n n n
E(XY)=(μ^2+σ^2)Σαiβi+(μ^2)Σ Σαiβj
i=i i=1j=1
i≠j
n n
So if E(X)E(Y)=E(XY), then (σ^2)Σαiβi = 0 => Σαiβi = 0
i=1 i=1
===============
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 111.252.2.154
※ 編輯: tibicos 來自: 111.252.2.154 (04/01 21:51)
※ 編輯: tibicos 來自: 111.252.2.154 (04/01 21:52)
→ yhliu :"Given X and Y are both Gaussian" 這樣的條件不夠 04/01 23:52
→ yhliu :定理的條件要看仔細. 04/01 23:52
→ tibicos :謝謝y大指教!前提應該是X與Y是聯合高斯分佈。? 04/02 06:53
→ raymond168 :"X and Y are independent iff X and Y are 04/02 14:44
→ raymond168 :uncorrelated." 這句話似乎有問題 04/02 14:45
→ raymond168 :獨立可保證不相關,但不相關並不能保證獨立 04/02 14:46
→ tibicos :[獨立]比[不相關]嚴格,但對聯合高斯分佈而言是等價 04/02 17:37
→ raymond168 :請問E(XY)是怎麼算出來的? 04/05 16:46