看板 Math 關於我們 聯絡資訊
※ 引述《leo790124 (4浩)》之銘言: : 題目:y''+(y')^2 = 2 * e^(-y) : 一開始先用代換令v = y' : 中間過程要用到Bernoulli eq : 但是到最後換回去就積不出來了 : 請大大幫幫我解,謝謝 y'' = v' = dv/dx = dv/dy dy/dx = v dv/dy v dv/dy + v^2 = 2 * e^(-y) dv/dy + v = 2 * e^(-y) v^(-1) Let t = v^[1 - (-1)] = v^2 => dt/dy = 2v dv/dy 2 v dv/dy + 2 v^2 = 4 * e^(-y) dt/dy + 2t = 4 * e^(-y) t = e^(-∫2dy) { ∫ 4 * e^(-y) e^(∫2dy) dy + C[1] } = e^(-2y) ( 4 e^y + C[1] ) = 4 e^(-y) + C e^(-2y) = v^2 = (y')^2 y' = [4 e^(-y) + C[1] e^(-2y)]^(1/2) = dy/dx dy/ [4 e^(-y) + C[1] e^(-2y)]^(1/2) = dx e^y dy/ [4 e^(-y) e^(2y) + C[1] e^(-2y)e^(2y)]^(1/2) = dx e^y dy/ (4e^y + C[1])^(1/2) = dx (1/4) d(4e^y + C[1]) /(4e^y + C[1])^(1/2) = dx (1/4) (4e^y + C[1])^(-1/2) d(4e^y + C[1]) = dx 2 (1/4) (4e^y + C[1])^(1/2) = x + C[2] (1/2) (4e^y + C[1])^(1/2) = x + C[2] (1/4) (4e^y + C[1]) = ( x + C[2] )^2 e^y + C[1]/4 = ( x + C[2] )^2 e^y = ( x + C[2] )^2 - C[1]/4 y(x) = ㏑ | ( x + C[2] )^2 - C[1]/4 | -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 118.161.243.220
leo790124 :感激不盡,我還正在努力理解中...謝謝 04/03 22:04
leo790124 :跪拜!! 04/03 22:09