看板 Math 關於我們 聯絡資訊
※ 引述《XYX16888 (XYX)》之銘言: : 1.Suppose f is continuous on [0,∞) and lim_{x->∞}f(x)=1. : Is it possible that : ∞ : ∫ f(x) dx is convergent? : 0 No. Pick 0.5>e>0. Choose M>0 large such that f(x)>1-e>0.5 for all x>M. But then for each K>0 and each T>0, we have ∞ ∫ f(x)dx > K T So the integral does not converge. : 2.Show that if a>-1 and b>a+1 , then the following : integral is convergent. : ∞ : ∫ [ (x^a) / (1 + x^b) ] dx : 0 : 希望有詳解 謝謝 : 每題100P先搶先贏囉! x^a / (1+x^b) =< x^a / x^b Consider ∞ ∞ ∫ [ (x^a) / (1 + x^b) ] dx ≦ ∫ x^a/x^b dx which is convergent since b>a+1 1 1 On the other hand, 1 1 ∫ [ (x^a) / (1 + x^b) ] dx ≦ ∫ x^a dx which is convergent since a>-1. 0 0 By comparison test, the integral converges -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.71.210.134
XYX16888 :發送100P 04/06 23:26