作者perceval (摸魚中)
看板Math
標題Re: [代數] 清大數學一題
時間Tue Apr 12 04:28:57 2011
※ 引述《luke2 (路克:2)》之銘言:
: 還有一題,我覺得無解= =
: 不過我是用列舉的就是了
: p,q為正整數,且
: p^2+3q^2 =11907
: p^2+3q^2=3^5*7^2
: p^2=3(63+q)(63-q)
: 求p與q的植
: 很明顯q要是3的倍數
3 | 11907 => 3| p^2+3q^2 => 3|p^2 => 3|p
3^2 | 11907 => 3^2| p^2+3q^2 => 3|q^2 => 3|q
....
3^2|q, 3^3|p
Let p=3^3 r, q=3^2 s
=> 3 r^2 +s^2= 7^2=49
Try r =1,2,3,4 => r=4,s=1 => p=108, q=9
--
The whole problem with the world is that fools and fanatics are
always so certain of themselves, but wiser people so full of doubts.
– Bertrand Russell
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 140.116.250.190
→ luke2 :我當初也是一直提, 不過算不出來,唉 04/12 06:13
→ luke2 :謝謝!! 04/12 06:13