※ 引述《ddrmatch ()》之銘言:
: X^2+Y^2+Z^2=1
: z x y
: 求f(x,y,z)= ------ + ------ + ------ 之最大值
: xy+1 yz+1 zx+1
這一题是幾年前的題目
原題目有限制條件x,y,z均為非負實數
先利用 0 <= 2y^2z^2+(y+z-x)^2 及 x^2+y^2+z^2=1
可以整理出 (x+y+z)^2<=2*(1+yz)^2
=> 1/(1+yz)^2<=2/(x+y+z)^2
=> 1/(1+yz)<=sqrt(2)/(x+y+z)
=> x/(1+yz)<=sqrt(2)*x/(x+y+z)
f(x,y,z)<=sqrt(2)*z/(x+y+z)+sqrt(2)*x/(x+y+z)+sqrt(2)*y/(x+y+z)
<=sqrt(2)
x=sqrt(2)/2 y=sqrt(2)/2 z=0
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 124.9.32.78