※ 引述《sincere617 (頂著鋼盔往前衝)》之銘言:
: 已知 a1=10 an= 2√an-1 求 lim an (as n~∞)
let b(n) = 2^n log_2(a(n)), b(1) = 2 log_2(10) = 2 + 2 log_2(5)
a(n) = 2 √a(n-1)
log_2(a(n)) = 0.5 log_2(a(n-1)) + 1
2^n log_2(a(n)) = 2^(n-1) log_2(a(n-1)) + 2^n
b(n) = b(n-1) + 2^n
b(n-1) = b(n-2) + 2^(n-1)
...
b(2) = b(1) + 4
b(n) = log_2(5) + 2 + 4 + 8 +...+ 2^n = 2^(n+1) - 2 + log_2(5)
b(n)/2^n = 2 - 1/2^(n-1) + log_2(5)/2^n
a(n) = 2^(b(n)/2^n) = 2^(2 - 1/2^(n-1) + log_2(5)/2^n)
lim(a(n)) = 4
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 122.125.40.240