※ 引述《jprnl (101)》之銘言:
: a為一正整數,a^2+132a為一正整數的平方,則a最大為?
a^2 < a^2+132a < (a+66)^2
suppose a^2+132a = (a+t)^2, where t=0~66.
Hence (132-2t)a = t^2
max a = max (t^2/(132-2t))
occurs at t=128/2=64 (note that 2|t).
max a= 64^2/4 = 32^2=1024.
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 131.215.6.212
※ 編輯: Sfly 來自: 131.215.6.212 (05/06 19:05)