看板 Math 關於我們 聯絡資訊
※ 引述《sosick (錢錢)》之銘言: : If the equation sin(x+y)+sin(y+z)=1 defines z implicitly : as a differentiable function of x and y , evaluate (Ø^2 z÷ØyØx) : Ø=partial的符號 : 拜託了 卡好久!! sin(x+y) + sin(y+z)=1 (d是partial的符號) partial derivative for x: (A) cos(x+y) + (cos(y+z))*(dz/dx) = 0 → 解得 dz/dx partial derivative for y: (B) cos(x+y) + (cos(y+z))*(dz/dy) = 0 → 解得 dz/dy 由 (A) 再去對y做partial derivative 或是 由 (B) 再去對x做partial derivative 如果從 (A) 對y做的話 (-sin(x+y)) + (-sin(y+z))*(dz/dy)*(dz/dx) + (cos(y+z))*(d^2 z/dydx) = 0 這樣就OK了 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 114.25.176.22
sosick :你到我那篇看一下答案!好像不太依樣... 05/12 23:26
znmkhxrw :........我算了一樣阿= = 05/12 23:31
sosick :是喔!!可是我算出來分母都是cos^2而已@@ 05/12 23:34
znmkhxrw :先生你忘了(cos(y+z))*(d^2 z/dydx) 前面還有一個^^ 05/12 23:34
sosick :我在算依次== " 05/12 23:35
sosick :OK 會了!!感謝 知道錯在哪兒了~ 05/12 23:40