※ 引述《derek0906 (巴斯特 波西)》之銘言:
: 2.政大企管97年轉學考
: http://subweb.lib.nccu.edu.tw/exam/data/transfer/ba/ba97.pdf
: 第3題此題一點頭緒都沒...
Given 2>ε>0 , there is N>0, such that,
f(x)
whenever x>N, │── - 3│<ε , and f(x),g(x)>1
g(x)
(這是從limf=limg=∞來的 不是亂寫)
that is , (3-ε)g(x)<f(x)<(3+ε)g(x)
f(x)
so ㏑── = ㏒ f(x)
g(x) g(x)
㏒ (3-ε)g(x)<㏒ f(x)<㏒ (3+ε)g(x) (with x larger than N)
g(x) g(x) g(x)
Given ε>0 , pick N >N such that ㏒ (3+ε)<ε
2 2 g(x) 2
then , 0<㏒ (3-ε)<㏒ (3+ε)<ε , whenver x > N
g(x) g(x) 2 2
so we have 1<㏒ (3-ε)+1=㏒ (3-ε)g(x)<㏒ f(x)<㏒ (3+ε)+1<1+ε
g(x) g(x) g(x) g(x) 2
, whenever x>N
2
㏑f(x)
so lim ─── = 1
x→0 ㏑g(x)
別被我嚇到了
我只是想試試看所以才用定義寫
應該可以這樣
㏑f(x) f(x) f(x)
lim ─── = lim ㏒ f(x)=lim ㏒ g(x)*(──)=lim(1+㏒ ──)
x→0 ㏑g(x) x→0 g(x) x→0 g(x) g(x) x→0 g(x) g(x)
f(x) f(x)
㏑── ㏑lim ──
g(x) g(x)
=1+ lim ─── =1+ ────── =1+0=1
x→0 ㏑g(x) lim㏑g(x)
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 219.70.207.166
※ 編輯: PaulErdos 來自: 219.70.207.166 (05/16 17:57)