看板 Math 關於我們 聯絡資訊
※ 引述《derek0906 (巴斯特 波西)》之銘言: : 2.政大企管97年轉學考 : http://subweb.lib.nccu.edu.tw/exam/data/transfer/ba/ba97.pdf : 第3題此題一點頭緒都沒... Given 2>ε>0 , there is N>0, such that, f(x) whenever x>N, │── - 3│<ε , and f(x),g(x)>1 g(x) (這是從limf=limg=∞來的 不是亂寫) that is , (3-ε)g(x)<f(x)<(3+ε)g(x) f(x) so ㏑── = ㏒ f(x) g(x) g(x) ㏒ (3-ε)g(x)<㏒ f(x)<㏒ (3+ε)g(x) (with x larger than N) g(x) g(x) g(x) Given ε>0 , pick N >N such that ㏒ (3+ε)<ε 2 2 g(x) 2 then , 0<㏒ (3-ε)<㏒ (3+ε)<ε , whenver x > N g(x) g(x) 2 2 so we have 1<㏒ (3-ε)+1=㏒ (3-ε)g(x)<㏒ f(x)<㏒ (3+ε)+1<1+ε g(x) g(x) g(x) g(x) 2 , whenever x>N 2 ㏑f(x) so lim ─── = 1 x→0 ㏑g(x) 別被我嚇到了 我只是想試試看所以才用定義寫 應該可以這樣 ㏑f(x) f(x) f(x) lim ─── = lim ㏒ f(x)=lim ㏒ g(x)*(──)=lim(1+㏒ ──) x→0 ㏑g(x) x→0 g(x) x→0 g(x) g(x) x→0 g(x) g(x) f(x) f(x) ㏑── ㏑lim ── g(x) g(x) =1+ lim ─── =1+ ────── =1+0=1 x→0 ㏑g(x) lim㏑g(x) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 219.70.207.166 ※ 編輯: PaulErdos 來自: 219.70.207.166 (05/16 17:57)