看板 Math 關於我們 聯絡資訊
p.281 prob 3 Suppose Ω is a simply connected domain that excludes the three roots of the polynomials 4z^3 - (g_2)z - (g_3). For ρ belonging Ω and ρ fixed, define ω dz I(ω)=∫ ------------------------------- ω belonging Ω ρ [4z^3 - (g_2)z - (g_3)]^(1/2) then I has an inverse given by p(z+α) for some α that is I(p(z+α))=z for approprite α. d 他的hint說證明----I(p(z+α)) = +1 or -1 再利用p是偶函數 dz ^^^^^^^^^^^^^^^^^^^^^^^^^這裡有做到 但是我不知道怎麼用偶函數這個條件來讓I(p(z+α))=z 請強者指教 謝謝^^ -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.112.25.15 ※ 編輯: Bourbaki 來自: 140.112.25.15 (05/17 20:03)
keroro321 :也許這個建議會對你有幫助,先從ρ附近來看. 05/19 06:43
keroro321 :由Ω的定義,知道I(ω) is well-defined.!! 05/19 06:44
keroro321 :ρ fixed,方程式p(z)=ρ has two roots (z_0,z_1). 05/19 06:45
keroro321 :(I(p(z_i)))'=I'(p(z_i))*p'(z_i) (i=0,1) 05/19 06:45
keroro321 :Becaus p is even (p' is odd), we can choose a 05/19 06:46
keroro321 :root z_2 (z_0 or -z_0=z_1 (mod M)) such that 05/19 06:46
keroro321 :(I(p(z_2)))'= 1, 從連續性知道 05/19 06:47
keroro321 :存在 a nbd U of z_2 使得 p(U)包含於Ω 並且 05/19 06:48
keroro321 :(I(p(z)))'= 1 , So I(p(z))= z+c(cons.)!! (z屬於U) 05/19 06:49
keroro321 :I(p(z_2))=I(ρ)= 0 =z_2+c , hence c=-z_2 05/19 06:49
keroro321 :I(p(z+z_2)) = z , (z+z_2 屬於U) 05/19 06:52
keroro321 :所以在 ρ 附近做到了,之後應該可以從類似證明 05/19 06:53
keroro321 :open connected in |R^n => path connected 05/19 06:53
keroro321 :證到整個 Ω. 05/19 06:53