看板 Math 關於我們 聯絡資訊
※ 引述《GHJK777 (GHJK777)》之銘言: : 標題: [微積] 雙變數證明一題(贈200P) : 時間: Wed May 18 23:12:40 2011 : : Prove that if f is a function of two variables that is : : differentiable at (a,b) then f is continuous at (a,b) Since f is differentiable at (a,b), there exists a unique vector grad(f) such that f(a+h_1,b+h_2) - f(a,b) = grad(f(a,b))‧h + o(h), where h=(h_1,h_2). |f(a+h_1,b+h_2)-f(a,b)| = |grad(f(a,b))‧h + o(h)| <= |grad(f(a,b))‧h)| + |o(h)| |grad(f(a,b))‧h| <= ∥grad(f(a,b))∥∥h∥ RHS→0 as h→0 and since lim(h→0)o(h)=0, |im(h→0)|f(a+h_1,b+h_2)-f(a,b)|=0 =>lim(h→0)f(a+h_1,b+h_2)-f(a,b)=0 =>lim(h→0)f(a+h_1,b+h_2)=f(a,b) Therefore f is continuous at (a,b). : : 希望可以用大一微積分的角度來解釋這題 : : 謝謝 : : -- : ※ 發信站: 批踢踢實業坊(ptt.cc) : ◆ From: 140.112.24.201 : → lukqwertyuio:不連續就不可微分不是嗎?可微分所以連續。 05/18 23:27 : → mk426375 :課本沒有? 05/18 23:32 : → GHJK777 :一樓說的沒錯 但是怎麼證明呢? 05/18 23:41 : → GHJK777 :課本似乎沒有 05/18 23:42 : 推 j0958322080 :哪本?? 05/18 23:49 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 140.114.201.140 ※ 編輯: mk426375 來自: 140.114.201.140 (05/19 00:08) ※ 編輯: mk426375 來自: 140.114.201.140 (05/19 00:11)