看板 Math 關於我們 聯絡資訊
※ 引述《mqazz1 (無法顯示)》之銘言: : Let G be a cyclic group : If |G| = n, then G is isomorphic to (Zn, +) : 請問這個式子該怎麼證呢? : 謝謝 G be a cyclic group,假設g是G的生成員 => <g>=G 且 |G| = n => g^n=1 考慮 ψ: G → Zn,by ψ(g^a)=a (mod n) then ψ is one to one(=>) and well defined(<=) g^a=g^b <=> g^(a-b)=1 <=> n|(a-b) <=> a-b=0 (mod n) <=> a=b (mod n) ψ is onto forall a屬於Zn => ψ(g^a)=a ψ is homomorphic forall a,b屬於Zn => ψ(g^a)ψ(g^b)=a+b=ψ(g^(a+b)) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 125.224.185.19