看板 Math 關於我們 聯絡資訊
※ 引述《alex800813 (L)》之銘言: : use Stokes' Theorem to calculate ∫c [(x-z)dx+(x+y)dy+(y+z)dz] : where C is the ellipse where plane z=y intersects the cylinder : x^2+y^2=1 , oriented counterclockwise as viewed from above. : 知道題目大概的意思 應該是要用curl F 下去解的吧.. : 但是我解出來有點複雜 希望有高手願意幫忙 ∫ Fdr = ∫∫ curlFdS C S S:h(r,θ) = (rcosθ,rsinθ,rsinθ) 0≦r≦1 and 0≦θ≦2pi h_r X h_θ = (0,-r,r) (Note that "X" is cross ) By calculating, we get curlF = (1,-1,1) by Stokes' thm, we have 2pi 1 ∫ ∫ 2rdrdθ = 2pi*1=2pi 0 0 BTY, we check ans by line integral as below : C:(cosθ,sinθ,sinθ) 0≦θ≦2pi so ∫(x-z)dx+(x+y)dy+(y+z)dz C 2pi = ∫ (cosθ-sinθ)*(-sinθ)+(cosθ+sinθ)*(cosθ)+(2sinθ)*(cosθ)dθ 0 =2pi # -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 180.177.112.173
alex800813 :非常謝謝你的幫忙! 我會了! 05/23 21:31
peicachu :剛剛眼花,現在手殘,curlF算成(1,1,1)XD 05/23 21:38
alex800813 :突然有個地方想不通 他的h_r X h_θ是怎麼算出來的@@ 05/23 21:41
peicachu :cylinder被z=y截面的法向量,取逆時鐘方向 05/23 21:46
peicachu :h_r的意思是對r偏微分,直接外積就好 05/23 22:06