看板 Math 關於我們 聯絡資訊
let L be the linear operator mapping R^3 into R^3 define by L(x) = Ax [ 3 -1 -2 ] [1] [1] [ 0] A = [ 2 0 -2 ] v1 = [1] v2 = [2] v3 = [-2] [ 2 -1 -1 ] [1] [0] [ 1] find the transition matrix V corresponding to a change of basis from {v1, v2, v3} to {e1, e2, e3}, and use it to determine the matrix B representing L ith respect to {v1, v2, v3} ======================================================================== 我是先令α={v1, v2, v3}, β={e1, e2, e3} [3 -1 -2] β [1 1 0] α [-2 1 2] [L] = [2 0 -2] V = [I] = [1 2 -2] [I] = [ 3 -1 -2] β [2 -1 -1] α [1 0 1] β [ 2 -1 -1] α [0 0 0] B = [L] = [I] [L] = [3 -1 -2] α β β [2 -1 -1] [0 0 0] 可是書上給的答案是B=[0 1 0] [0 0 1] 請問我是甚麼地方錯了? 謝謝 -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 61.228.26.197
ert0700 :應該是矩陣表示的意義弄錯了 再看一下書 05/28 17:20
※ 編輯: mqazz1 來自: 61.228.26.1 (05/28 23:52)