作者JohnMash (Paul)
看板Math
標題Re: [微積] delta function
時間Sun May 29 19:59:57 2011
※ 引述《ed78617 (雞爪)》之銘言:
: → →
: δ(r - r') = δ(x-x')δ(y-y')δ(z-z')
: =(1/r)δ(r-r')δ(θ-θ')δ(z-z')
: 我想問的是,柱坐標的這一式怎麼來的?
: 看起來是因為對三維空間積分時,rdrdθdz 正好可以消去(1/r)
: 那...有沒有嚴謹一點的推導方法呢
δ function is meaningful only when it is integrated with a function
∫_M f(x,y)δ(x-x')δ(y-y') dx dy = f(x',y') when M includes (x',y')
= 0 otherwise
∫_M f(r cosθ, r sinθ)δ(r-r')δ(θ-θ') r dr dθ
= r' f(r'cosθ',r'sinθ') when M includes (x',y')
= 0 otherwise
Hence, δ(x-x')δ(y-y')
=(1/r') δ(r-r')δ(θ-θ')
=(1/r) δ(r-r')δ(θ-θ')
--
※ 發信站: 批踢踢實業坊(ptt.cc)
◆ From: 112.104.142.91
推 ed78617 :嗯,了解。 05/29 20:06
※ 編輯: JohnMash 來自: 112.104.142.91 (05/29 20:18)
推 herstein :NIce~ 05/30 11:03