看板 Math 關於我們 聯絡資訊
※ 引述《mqazz1 (無法顯示)》之銘言: : let V and W be vector spaces with ordered bases E and F, respectively : if L:V->W is a linear transformation and A is the matrix representing L : relative to E and F, show that : (a) v屬於ker(L) if and only if [V] 屬於 N(A) : E : (b) w屬於L(V) if and only if [w] is in the column space of A : F : 請問這兩題應該怎麼證呢? : 我翻過手上書好像沒看到類似的證明@@ : 有沒有好心的高手可以指點一下 謝謝!! (a) If v ∈ Ker(L) => L(v) = 0 => Av = 0 => [v] ∈ N(A) E If [v] ∈ N(A) => Av = 0 => L(v) = 0 => v ∈ Ker(L) E (b) If w ∈ L(V) => Av = w => a v1 + a v + ... a v = w, where 1 2 2 n n a is the ith column of A for 1 <= i <= n i So, w ∈ Rank(A) (column space of A) If w ∈ Rank(A) (column space of A) => Av = w for some v ∈ V => L(v) = w. So, w ∈ L(V) 有些符號我弄得不是很好,所以可能有些問題.... -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 111.251.185.98
mqazz1 :謝謝!! 05/30 09:46