看板 Math 關於我們 聯絡資訊
※ 引述《mqazz1 (無法顯示)》之銘言: : let S be the subspace of R^3 spanned by the vectors x = (x1, x2, x3)^T : and y = (y1, y2, y3)^T : [x1 x2 x3] : let A = [y1 y2 y3] : ⊥ : show that S = N(A) : 請問有人知道這個該怎麼證嗎? : 謝謝!! (x1, x2, x3)^T and (y1, y2, y3)^T 屬於S ⊥ If (a1,a2,a3)屬於S <=> (a1,a2,a3)˙(x1, x2, x3)^T=0 and (a1,a2,a3)˙(y1, y2, y3)^T=0 <=> (a1,a2,a3)屬於N(A) -- ※ 發信站: 批踢踢實業坊(ptt.cc) ◆ From: 125.224.182.97
mqazz1 :謝謝! 06/05 18:57